Ribosomal Proteins RPL37, RPS15 and RPS20 Regulate the Mdm2-p53-MdmX Network
نویسندگان
چکیده
Changes to the nucleolus, the site of ribosome production, have long been linked to cancer, and mutations in several ribosomal proteins (RPs) have been associated with an increased risk for cancer in human diseases. Relevantly, a number of RPs have been shown to bind to MDM2 and inhibit MDM2 E3 ligase activity, leading to p53 stabilization and cell cycle arrest, thus revealing a RP-Mdm2-p53 signaling pathway that is critical for ribosome biogenesis surveillance. Here, we have identified RPL37, RPS15, and RPS20 as RPs that can also bind Mdm2 and activate p53. We found that each of the aforementioned RPs, when ectopically expressed, can stabilize both co-expressed Flag-tagged Mdm2 and HA-tagged p53 in p53-null cells as well as endogenous p53 in a p53-containing cell line. For each RP, the mechanism of Mdm2 and p53 stabilization appears to be through inhibiting the E3 ubiquitin ligase activity of Mdm2. Interestingly, although they are each capable of inducing cell death and cell cycle arrest, these RPs differ in the p53 target genes that are regulated upon their respective introduction into cells. Furthermore, each RP can downregulate MdmX levels but in distinct ways. Thus, RPL37, RPS15 and RPS20 regulate the Mdm2-p53-MdmX network but employ different mechanisms to do so.
منابع مشابه
MDMX regulation of p53 response to ribosomal stress.
Ribosomal stress such as disruption of rRNA biogenesis activates p53 by release of ribosomal proteins from the nucleoli, which bind to MDM2 and inhibit p53 degradation. We found that p53 activation by ribosomal stress requires degradation of MDMX in an MDM2-dependent fashion. Tumor cells overexpressing MDMX are less sensitive to actinomycin D-induced growth arrest due to formation of inactive p...
متن کاملPredicted Functions of MdmX in Fine-Tuning the Response of p53 to DNA Damage
Tumor suppressor protein p53 is regulated by two structurally homologous proteins, Mdm2 and MdmX. In contrast to Mdm2, MdmX lacks ubiquitin ligase activity. Although the essential interactions of MdmX are known, it is not clear how they function to regulate p53. The regulation of tumor suppressor p53 by Mdm2 and MdmX in response to DNA damage was investigated by mathematical modeling of a simpl...
متن کاملStructural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX.
The oncoproteins MDM2 and MDMX negatively regulate the activity and stability of the tumor suppressor protein p53--a cellular process initiated by MDM2 and/or MDMX binding to the N-terminal transactivation domain of p53. MDM2 and MDMX in many tumors confer p53 inactivation and tumor survival, and are important molecular targets for anticancer therapy. We screened a duodecimal peptide phage libr...
متن کاملAffinity-based screening of MDM2/MDMX-p53 interaction inhibitors by chemical array: identification of novel peptidic inhibitors.
MDM2 and MDMX are oncoproteins that negatively regulate the activity and stability of the tumor suppressor protein p53. The inhibitors of protein-protein interactions (PPIs) of MDM2-p53 and MDMX-p53 represent potential anticancer agents. In this study, a novel approach for identifying MDM2-p53 and MDMX-p53 PPI inhibitor candidates by affinity-based screening using a chemical array has been esta...
متن کاملTurning a scorpion toxin into an antitumor miniprotein.
The oncoproteins MDM2 and MDMX negatively regulate the activity and stability of the tumor suppressor protein p53 and are important molecular targets for anticancer therapy. Grafting four residues of p53 critical for MDM2/MDMX binding to the N-terminal alpha-helix of BmBKTx1, a scorpion toxin isolated from the venom of the Asian scorpion Buthus martensi Karsch, converts the miniature protein in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013